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AbstmcL Following the melhod of Gibbs, lhe equilibrium equations for a solid and 
various fluids in mnMcI, including apillarily and elasticity, are written for the general 
case. They are then applied to the example of a lhin plate in conlac1 with a drop of 
fluid. ?he classical Young", equalion is modified. 

1. Introduction 

The equilibrium of a solid in contact with a drop of fluid (surrounded by another 
fluid), including capillarity and elasticity, has been mainly studied in the semi-infinite 
solid [1-4] (with a divergence problem at the solid-fluid-fluid contact line) and the 
thin-plate case 1.5-71. Nevertheless, in all these studies, (i) it was assumed that either 
the solid-fluid-fluid line was fixed on the solid, or the volume of the drop of fluid was 
constant; (ii) the solid-fluid surfaces were treated exactly as if they were fluid-fluid 
surfaces. Assumption (i) is not justified (the true equilibrium variational condition 
must take into account a possible motion of the solid-fluid-fluid line and a variation 
of the volume-and the  mass-f the drop of fluid), and assumption (ii) is incorrect, 
as known from the first thermodynamic approach of Gibbs [SI: it corresponds to 
a confusion between surface grand potential and surface stresses. An attempt to 
introduce the surface stresses was made in (91 (in the case of the thin plate), but 
with the erroneous starting assumption that the derivatives U" and d" of U (= elastic 
displacement perpendicular to the plate) were continuous at the solid-fluid-fluid line 
(the discontinuity jumps of U" and U"' are precisely consequences of the equilibrium 
condition). There is then a real need to write the correct equilibrium equations 
for a general system involving capillarity and elasticity, together with the precise 
thermodynamics of a solid-fluid surface. These equations cannot be directly and 
rapidly obtained: we have followed a rigorous method similar to that of Gibbs [8], in 
which the various equilibrium equations are deduced from general thermodynamics. 
This method is presented in appendix 4 and the equations in section 2. In addition 
to the above deficiencies, in the studies mentioned, the thin-plate case was treated 
without any stretching (of the middle plane) of the plate, then assuming that ZL = 0 
(U = elastic displacement parallel to the plate). It was concluded that at the solid- 
fluid-fluid line, (i) the orientation of the plane tangent to the plate was continuous; 
(ii) U" was continuous and U"' discontinuous and (iii) the classical Young's equation 
remained valid [7]. However, in contradiction with the above assumption, a stretching 
(of the middle plane) of the plate was clearly observed in a recent experiment [IO]. 
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Section 3 and appendix B are then devoted to the case of the elastic thin plate 
(with stretching, Le. with both components U and v of the elastic displacement), 
by application of the general equilibrium conditions of section 2. This example 
illustrates perfectly: (i) the various discontinuities which occur at the solid-fluid-fluid 
line: discontinuities of the tangent plane, U', U'' and Y"'; (ii) the influence of the 
surface stresses and (iii) how the classical capillaty Young's equation is modified when 
elasticity is taken into account. 

2. Equilibrium of a solid and various fluids in contact 

Let us consider the general system formed by a solid s and various immiscible fluids 
f, P, etc in contact, in which the solid can neither dissolve nor grow, but there may be 
mass exchanges between all the fluids and the solid-fluid and fluid-fluid surfaces. For 
simplicity's sake, we suppose that the solid consists of a substance c, the fluids and 
the solid-fluid and fluid-fluid surfaces are composed of the suhstances 1.2 , .  . . , n, all 
these components c, 1 , 2 , .  . . , R  being independent (note that the solid-fluid dividing 
surfaces, as defined by Gibbs, are perfectly determined hy the preceding condition 
that the surface density of the substance c vanish). In the derivation of appendix A, 
we also suppose that, for each component i, all the fluid regions and the fluid-fluid 
surfaces which contain i are connected to each other, and we exclude the formation 
of new fluids or new (solid-fluid or fluid-fluid) surfaces (in the variational equilibrium 
criterion). By carefully applying the method of Gibbs [SI, we show, in appendix A, that 
the equilibrium of the system is equivalent to (i) the thermal and chemical equilibrium 
equations (Al, A2); (ii) the mechanical equilibrium equations (AG, A7) concerning 
only the system of the fluids (these equations (Al,A2,AG,A7) were written by Gibbs 
[SI) and (iii) the following new mechanical equilibrium condition (of variational form), 
which only concerns the solid, the solid-fluid surfaces and the solid-fluid-fluid lines 

in which 6 is an arbitrary infinitesimal variation such that, on the closed surface which 
bounds the system, the points of the solid and the points of the solid-fluid-fluid lines 
rcmain fixed; see figures 1 and 2 for the geometrical notations; T is the temperature; 
6,F, is the variation of the elastic Helmholtz free energy of the solid (at constant 
T); g is the gravity field; : the height; 712 the mass; p the fluid pressure; dn, dnu are 
areas of an sf surface element, in the present deformed state and in the 'undeformed' 
reference state of the solid, respectively; p i  is the chemical potential per unit mass of 
component i; UaU, .Ya0 and respectively, are the internal energy, the entropy 
and the mass of the component i per unit area in the reference state of the solid 
(these are surface excesses on sf, with the convention of Gihbs: no excess of mass for 
the component of the solid); yIIr is the fP surface tension; dl, dl' are lengths of an sff 
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line element, in the present state and in the reference state of the solid, respectively; 
for an sf surface, yo = U,, - TSap - C i p i m ; , , o  is the excess of grand potential 
on sf, per unit area in the reference state of the solid. It may be specified that the 
last summation CSa, in (1) must also include similar terms for all other lines (of the 
surface of the solid) on which the thermodynamic (solid-fluid) surface quantities are 
discontinuous (if there are such lines which are not SF lines). Note that in expression 
(l), all the variations 6 follow each malarial point of the solid, except 6 X  and 6X" .  

Figure I. The system is formed hy a solid s and various fluids f. P, etc. l l i e  various 
surfaces sf, ff, etc and lines 58'. Pi". etc are indicated. 

Figure 2. Geometrical notations. In the present state of the system (b) ,  IZ is the unit 
vector, normal to sf, oriented from f to s: 6 1  is the displacemen1 of a material point 
of l e  salid; T ~ ,  is the unit vector, perpendicular to the SA' line, tangential lo he 0' 
surface. and orienled from the sff' line to Uie interior of IT and SX is the displacement 
of the sff' line, perpendicular to the line. 6X@ is the dbplacement of the SA' tine, 
measured in lhe 'undeformed' reference stale of Uie solid (a), perpendicular to that line 
in the reference sale, positively considered from sf lo SI'. 

The term 6UG0 - T6SSo - x i  fii6ini,ao may be interpreted as the work of the 
'surface stresses'. Indeed, if we consider that, for a solid-fluid surface, the variables 
are T, pi  and the state of strain of the surface (see [II-14]), and represent the latter 
by the Green strain tensor e,@ ( a , p  = 1,2) of the surface (the coordinate system 
of the surface being lixed in the 'undeformed' reference state of the solid), then the 
application of (l), in the case of a unique fluid f, gives 

(since the material points of the surface are fixed, and the sum of the two terms 
corresponding to the solid vanish, owing to the mechanical equilihrium in the solid). 
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We may then write, in the general case 

(at each material point of sf; this surface stress tensor rwP is taken to be symmetric 
because of the symmetry of ea@). This equation generalizes equation (24) of [14], in 
the case of a solid-fluid surface. As an immediate consequence, we have 

These expressions (2) (for each sf surface, and, in the case of a aystal, for each 
crystallographic orientation of the surface) may then be introduced in the equilibrium 
condition (1). 

3. Example of the thin plate 

3.1. Equilibrium equations 
As a simple application of the above equilibrium condition (1) (with the expressions 
(2)). we now consider the example in which the solid s is a circular thin plate (with 
conditions of circular symmetry on its boundary circle), in contact with a drop of fluid 
f, centred on the plate, s and f being surrounded by another fluid f. In order to 
simplify the equations, we suppose here that there is no gravity and no surface s t r e s s  
(the more complete equations, including surface stresses, are given in appendix B). 
In this case, all the quantities T, p i ,  pt, pr,, yat, -& and 7:. are constant in space 
at equilibrium (p i  is constant because g = 0, according to A2) of appendix A; pf, 
p,, and 7ar are constant because T and f i i  are constant; ySf and y:, are constant, 
according to (2'), because T and pLi are constant and rr+ = 0). The geometry of 
the system is shown in figure 3. Let W ( T )  and u(r) respecrively be the displacements, 
along Or and Or, of a material point of the plate situated at the distance r from 0 
(in the undeformed state). At equilibrium, the drop is spherical, with radius 

6 

R = 27iif/(?1f - Ytl) (3) 

(according to (A6) of appendix A). We denote by T~ and rZ the components along Or 
and 0; respectively of the vector rat (defined in section 2); we have the geometrical 
conditions 

T," + 7: = 1 T, = -(PI + u(rI ) ) /R .  (4) 

With the following expression of the free energy of the plate (at constant temperature) 
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deduced from [15J (in this expression, the first pan represents the energy of flexion, 
and the second part the energy of stretching; T is the radius of the undeformed 
plate; E Young’s modulus, U Poisson’s coefdent  and h the thickness of the 
plate), the equilibrium condition (1) then leads to a variational problem with mobile 
discontinuities (for some derivatives of U and u at rl). The variational calculus shows 
that the condition (1) is equivalent to the following equations 

2a(2u/r - 2u‘ - 2ru” - v” - 2rv‘v“ + u d 2 )  
E h  

2( 1 - u2) 

I Eh3 
24( 1 - v2)  

27T2(u‘/P - U“/?- + 2u“’ + rv(4)) 

- E h  2n[vf3 + 3 ~ 7 ” ~ ~ ”  + 2u’d 4- 2Tu”v’ + 2T7L‘v” + 2v( 7L’u’ i- ud’)] 
2( 1 - Y 2 )  

(pf -pr , ) (1+1~‘)2a(r+( i )  for all rE]O,rl[ 
(6) 

= {0 for all T ~ ] r ~ , r ~ [  

v”is continuous at T,  (9) 

TI -“la#- 

inwhich [u’]=(~‘(r~)-u‘(~;)=lim,,,,,,,,,z~‘(r)-lim,_,,,,,,, 7~‘(r); similarly, 
[v”’] = d”(r7) - u‘”(r;); in (lo), @ = + or -, and = +1 if @ = +, &‘ = -1 
if @ = - (the two corresponding equations (10) are equivalent, according to (7)). 
These equations (3)-(10) (of (3)-(5) and (Bl)-(BS) of appendk B) and the boundary 
conditions completely determine R, U, v, TI, rv and r2.  

3.2. Physical meaning 

The equations (5), (6) or (S), (Bl) (above and in appendix B) represent the elastic 
equilibrium of the plate (for r # TI) subjected to the overpressure pr - pf, in the 
interior of the circular solid-fluid-fluid line (for small deformations, ( T  + 7~(r)) /r  = 
1). There is of course a pressure effect due to the sum of the surface stresses when 
the plate is curved (in the right-hand side of (BI)). 

There are four equilibrium equations (7)-(IO) or (B2)-(BS) at the solid-fluid- 
fluid line. Equation (8) expresses the elastic reaction of the plate to the beertical’ 
component of the tension of the fluid-fluid surface, acting on a fixed line of the solid 
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f '  n 

f '  

Figure 3. Tlle solid thin plate s is in "an uilh a drop of fluid f and surrounded bj 
another fluid P. 0 is the Cenlre of the undefomed plate, Or is a centrifugal radial axis 
(in Ute plane of the undefomed plate); 01 is the axis perpendicular IO the undeformed 
plate, oriented from f Lo s and q is the radius of the circular df' line. in the undefomed 
scale of the plate (it kecomes rI + z ( ( q )  in the present state). 

(the plane of the undeformed plate being borizontal): this reaction is a discontinuity 
jump of v"' at T, (U is the vertical displacement of a point of the plate). This equation 
may be compared with equation (24) of 171. In addition, there is a contribution 
of the  surface stresses (in equation (53)) by means of the jump of their moment 
(xSr - rrfr)h/2 (see below, concerning (B4)). 

Similarly, (7) or (B2) expresses the elastic reaction of the plate to (i) the horizontal 
component of the tension of the fluid-fluid surface, acting on a fmed line of the solid 
and (ii) the jump of the  surface stresses xrft -rsf = ( rd, + xsf,) (at T:)  -( nSf+ rSff) 
(at T;).  This elastic reaction is a discontinuity jump of U' at (71 is the horizontal 
displacement of a point of the plate). As a geometrical consequence, this discontinuity 
of U' at vI implies a discontinuity of the orientation of the plane tangent m the plate. 

Equation (9) or (B4) represents the equilibrium of the moments: the jump of the 
moment (at the middle plane of the plate) of the surface stresses (rsf - rrf,)h/2 = 
( x , ~ ,  - rSf,)h/2 (at 7:) -(rd, - r d ) h / Z  (at r ; )  is elastically equilibrated by a 
discontinuity jump of U'' at pI. Note that the equations (7) or (BZ), the discontinuity 
of the tangent plane and equations (B3) and (B4) are completely new with respect 
to the preceding work [7]. 

The last equation (10) or ( B 5 )  represents the equilibrium relative to the motion of 
the solid-fluid-fluid line with respect to the solid. This original equation generalizes 
the classical 'Young's equation' (which concerns the undeformable solid). Indeed, note 
that Young's equation, yR1 cos p + rsr - ysf, = 0 would correspond to equation (10) in 
which the first term (with coeRicient e @ )  would be omitted and 71' would be supposed 
continuous at T,: with the help of {(q+ I L ( T ~ ) ) / ~ ) { T ~ ( ~  + a ' (q ) )  + ~ , V ' ( P , ) }  = 
-(du/da")cosq, where da/da" is taken at r, and q is the contact angle measured 
in the fluid f, and we use y = yudaO/du for sf and sf'. Then, in the case of the elastic 
thin plate, Young's equation is not valid and is explicitly replaced by equation (10) or 
(B5). ?b our knowledge, it is the first time that such a rigorous and explicit equation 
(which modifies Young's equation) has been written. Let us real l  that the preceding 
work [7] concluded that Young's equation was valid. Note that this new equation (10) 
or (B5) involves all the parameters: fluid-tluid surface tension y, solid-fluid surface 
grand potentiah y" (or T), surface stresses, geometly, strain and elasticity. 
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3.3. Magnitude of rhe effecls 

In addition to the interest of the above equations (and those of appendix B) as original 
theoretical equations, and as a very illustrative example of the equilibrium equations 
involving capillarity and elasticity, it is of course important IO estimate the magnitude 
of their effects. As a first example, let us take typical elastic constants, E Y 10“ Pa, 
Y Y 0.3, and geometrical dues suggested by experiment [lo], h Y 3 x m, 
TI Y m, v‘(minimum) Y -6 x ~“(0)  Y -6 x IO4 m-l. The respective 
elastic energies of flexion and stretching, estimated by means of the following terms 
(see, above, the expression of the elastic energy) 

flexion: ( Eh3/24( 1 - vZ))va2 
stretching: ( E h / Z ( l -  Y ~ ) ) ( V ’ ~ / ~ ) ~  Y 5 x 

0.5 x IOd3 J m-’ 
J m-* 

clearly show the importance of the stretching, in agreement with the direct 
observations of the stretching of the plate [lo], and in opposition to the previous 
works [S-71 which did not take into account the energy of stretching. 

Equation (8) generally produces an important negative jump of U‘”. Thus, for 
a vertical fluid-fluid tension ( T ~  = -l), with a typical value ys, LT 0.5 J n r Z  (and 
other parameters as above), it gives [v”’] LT -2 x 10l2 d. As shown by the explicit 
profiles of [5 ] ,  ttus discontinuity generally represents a jump from a high positive 
value V”‘(r;) > 0 to a negative one ~”‘(r:) < 0, with the following visible effect: 
the (radial) curvature V” rapidly increases (U’” > 0) from a negative value at T = 0 
to a positive one at T = rI (d’ being supposed continuous at TJ,  and then slowly 
decreases (U”‘ < 0) from this positive value to a lower one at T = vP. The effect of 
the surface Stresses (the last term in equation (B3)) is generally small since hlr, is 
small. Nevertheless, this effect may be of the same magnitude as that of the fluid- 
fluid tension (the second term of (83)) if T= Y 0 (i.e. for contact angles = CP or ISOO): 
in our example, yatlirv’l J m-’ and Insl- rs,I/z/21.1 Y 1.5 x 10W2 J m-z 
if Inrf - nSfrI = 1 J m-’. 

With 
rsr > nsr, and a difference of surface stresses rsf - rsf, Y 1 J m Z ,  the above example 
leads to the important positive jump [U“] Y 6 x lo4 m-’ (of the same magnitude as 
I~‘’(0)l). The consequence will be a high positive value of the curvature d’(r:), i.e. 
a rapid increase of the slope (Y U’) of the plate (from a negative value to nearly 
zero). This is probably the explanation of the rapid variation of the slope of the plate 
at TIT observed in [lo]. 

With the preceding values, and according to equation (B2), the jump of 11‘ may 
reach the value (with T~ LT -1) [U‘] IT 0 . 5 ~ 1 0 - ~ .  This discontinuityjump is significant, 
compared with U’ rz d2/2 LT 1.S x (if we consider, as a rough estimate, that 
u/r Y U’ Y d 2 / 2 ;  these terms represent the global stretching of the plate, since 
el l  + en ‘I u/r  + 11’ + d 2 / 2  for the middle plane of the plate; see appendix 
B). The discontinuity of U‘ produces a discontinuity of the slope I > ’ / (  1 + 71‘) of 
the plate. The corresponding jump [v‘ / ( l  + U’)] Y -u‘[?L‘] i? generally small, but 
may be appreciable with more deformable solids. With E IT lo8 Pa (the Young’s 
modulus range 10’-10’ Pa is represented by polymers, elastomers and gels) and 
other parameters unchanged, the jump of the slope reaches the considerable value of 
-0 .5~ ’ .  

The deviation from the classical Young’s equation is mainly represented by the 
first term (with coefficient 6“)) in (10) or (B5). With the previous numerical d u e s  

3 x 

The effect of the surface stresses is very important in equation (B4). 
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and E loy Pa, this term (in equation (BS)) is equal to 0.08 J m-2, which is 
appreciable with respect to the second term 2 yrr, Y 0.5 J m-I of the equation. With 
E Y l@ Pa, it becomes of fundamental importance, its value (of 0.8 J m-’) being 
greater than the second term yBj. 

4. Conclusions 

By following the thermodynamic approach of Gibbs [SI, we have obtained in section 
2 and appendix A (i) the general thermodynamic equation (2) or (2’) for a solid- 
fluid surface, involving the surface grand potential and the surface stresses and 
(ii) the complete set of equilibrium equations for a solid and various immiscible 
fluids in contact, including elasticity of the solid and capillarity for all the solid- 
fluid and fluid-fluid surfaces. These equations are (a) the thermal and chemical 
equilibrium equations (Al,  A2); @) the mechanical equilibrium equations (A6, A7) 
concerning only the fluids (all these equations were written by Gibbs [SI) and (e) 
the new mechanical equilibrium condition (1) (with expressions (Z)), of variational 
form, which only concerns the solid, the solid-fluid surfaces and the solid-fluid-fluid 
tines. This condition expresses the action on the solid of (i) the fluid pressure and 
the (solid-fluid) surface stresses, at each solid-fluid surface and (ii) the fluid-fluid 
surface tension and the difference of (solid-fluid) surface grand potentials, at each 
solid-fluid-fluid line. 

As a very illustrative example of this general theory, the case of the elastic thin 
plate in contact with a drop of fluid (surrounded by another fluid) is treated in 
section 3 and appendix B. In this case, the equilibrium is equivalent to equations 
(3)-(5), (Bl)-(B5) (or (6)-(IO) in the absence of surface stresses) and the boundary 
conditions. The four original equations (B2)-(B5) at the solid-fluid-fluid line have a 
clear meaning: (BZ)-(B4) express the equilibrium of the forces, corresponding to a 
solid-fluid-fluid line k e d  on the solid; (BZ) represents the ‘horizontal’ component of 
the equilibrium (‘horizontal’ refers to the plane of the  undeformed plate), (B3) the 
vertical component and (B4) the equilibrium of the moments; whereas (B5) expresses 
the equilibrium relative to the motion of the solid-fluid-fluid line with respect to the 
solid. 

Equations (B2)-(B4) perfectly illustrate the various discontinuities which occur at 
the solid-fluid-fluid line, mused by the action on the elastic solid of the fluid-fluid 
surface tension and the (solid-fluid) surface stresses: these are the discontinuity jumps 
of 71’, v” and U‘” (U and v respectively denote the horizontal and vertical components 
of the elastic displacement). The discontinuity of ti‘ also implies a discontinuity of 
the orientation of the plane tangent to the plate. Note that, in the preceding work 
[A, (i) the surface stresses were ignored (the solid-fluid surfaces were treated as if 
they were fluid-fluid surfaces) and (U) equation (BZ) and the discontinuity of the 
tangent plane were unknown, since the horizontal cliplacement 11 (i.e. the stretching 
of the plate) was not taken into account (in opposition to the direct experimental 
observations [lo]). 

The original equation (B5) shows how the classical capillary Young’s equation is 
modified when the solid is elastically deformable. ?b our knowledge, it is the first time 
that such a generalization of Young’s equation has been proved and explicitly written 
(the preceding work [7] concluded that Young’s equation was valid). In addition to 
the dependence of the (solid-fluid) surface grand potentials on the surface strain, 
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and to the discontinuity of the plane tangent to the solid, this equation contains a 
new term directly related to the elasticity of the solid (and also involving the surface 
stresses and the fluid-fluid surface tension). 

It is also shown that the magnitudes of these effects (i.e. the various discontinuities 
and the deviation from Young's equation) are  measurable and may even be of prime 
importance, if the solid is sufficiently deformable. 

Appendix A. The general equilibrium equations 

We consider that the whole system is bounded by a closed surface C and wi t e  the 
Gibbs equilibrium criterion 

6 ( U + V ) > O  

(U is the internal energy and V the potential energy of gravity), for all variations of 
the system such that (i) the entropy S and the masses mi of the Mrious components 
(i = 1,. . . , n) are constant and (ii) the bounding surface C, the points of the solid 
which belong to this surface, and the lines in which the fluid-fluid surfaces meet this 
surface, are all fixed. The above criterion may be written 

with the notations of the paper and U the volume; CL the area; ( 7 r j k )  the Kirchhoff 
stress tensor; ( e j k )  the Green strain tensor and dv" an element of volume of the 
solid in its 'undeformed' reference state; note that, in the solid, the variation 6 is 
attached to each material element, whereas this is not the case for the fluids and the 
ff surfaces. The equilibrium criterion, together with the conditions of constant S and 
mi 

lead to the thermal and chemical equilibrium equations 

T = constant in space 

pi + g z  = M i  = constant in space 

(A') 

(-42) ( i  = 1,. . . , T I ) .  
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With the help of the preceding equations, the equilibrium condition reduces to the 
mechanical form 

where 6,Fs = LCj,k xjk6ejkdvu. 
Let us first transform the preceding terms Cf and Zfld. Since the variation 6 only 

concerns geometr id  elements (dv, dn and z) ,  these terms will remain unchanged if 
arbitrary variations 6 p  and 6y are introduced. Following Gibbs, we take 

61, = ( a p / i ) ~ ) ( z , y , z ) 6 z +  ( a p / a y ) ( z , y , z ) 6 y +  ( 8 p / a z ) ( a : , y , z ) 6 z  

6~ = (~-Y/~-ZI)(-ZI,+,)~~I + (ay /az~) (+~1?+2)6zz  

where p ( z ,  y, z )  is the pressure in f as a function of spatial coordinates and y(z,,zz) 
the surface tension of fl' as a function of coordinates of the ff surface (these functions 
refer to the present 'initial' state of the system, Le. before the variation 6) ,  and 
(6z,, 6 4  represents the component 6z,, tangent to W, of the displacement of a 
point of W. Then 

/(-p6dv + g6zdm)  = -6 + g6rdm) 
I 

where m, = dm/du  and 6 N  is the normal displacement of the sf (or W) surface, 
positively measured from f to 5 (or from f to P). Hence 

in the term p refers to f, p' to P and 6 N  is positively measured from f to P. 
Similarly 
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in which R,. R, are the principal curvature radii of the ff surface, positively 
considered when the centres are on the f side; for each ff, T is the unit vector, 
perpendicular to the sff (or ff i") line, tangent to the ff surface, and oriented from the 
line to the interior of ff; in the above terms, Y T  refers to ff; 6 X  is the displacement 
of the SF (or ff P') line, perpendicular to the line and dl is the length element along 
the line. 

Since 

6r  = 6 N cos 6 + 6r,  

(where 6 is the angle between the O z  axis and the normal to the surface, oriented 
from f to P, and 6s, is the component along Os of ax,), we may write: 

in which m, = dm/da and the summation Ea, Y T  concerns the various ff surfaces 
which meet in the Wf' line. 

With the help of the preceding expressions, let us return to the condition (A3). 
By fixing the p i n t s  of the solid, the sff lines and the thermodynamic stare of the sf 
surfaces, this condition only refers to the fluids, the ff surfaces and the fff' lines, 
and it is then equivalent to the following equations: 

in each f 

dpfdz = - Qm" 

(in (A4) and (AS), y ,  y, In, and ina depend only on 2). These equilibrium equations 
(Al), (AZ), (A4)-(A7) were written by Gibbs IS]. Note that (A4) and (A5) are 
consequences of (Al) and (M), since y and y are functions of T and pi which 
satisfy 

d p  = s, d T  + d& 
i 

dy = -Sa d T  - ini,* dpi 
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(as above for m, we use the subscripts v and n respectively to denote the volume 
density and the surface density). 

With the help of (A4)-(A7), the above expressions may finally be written 

The terms C, in (M) are transformed in the following way 

the superscript 0 indicates that areas and lengths are taken in the 'undefonned' 
reference state of the solid; U,, = dU/dnO; 6Ua0 is attached to each material point 
of the solid; 6Xu is the displacement of the sff line, measured in the reference state 
of the solid, perpendicular to that line in the reference state, positively considered 
from sf to sf'. Then 

More precisely, note that the last summation must be performed for all the lines 
(of the surface of the solid) on which U,. is discontinuous (if there are such lines 
which are not sff' lines). With similar expressions and the help of (AI), (A2), we 
obtain 

dU - T6 d S  - Mi6 /, d?ni + 6 lf g z  dn,) 

with the notations of the paper. 
The introduction of expressions (AS) and (As) into (M) leads to the equilibrium 

condition (1) of the paper. The equilibrium of the system is then equivalent to 
equations (AI), (A2), (A6), (A7) and condition (1). 

Appendix B. Equations for the thin plate with surface stresses 

For simplicity's sake, we also suppose that there ir no gravity. Then, T, pi, pf, pf, 
and yut are constant in space at equilibrium. Equations (3) and (4) of the paper 
remain valid. However, according to (Y), the surface grand potentials 7: and 7:, 
now depend on the surface strain eeU. The more simple case is that in which the 
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surface stresses only depend on T and gi (and not on e,B), and are isotropic, 
ie. T ~ , ~ ~  = 7rrt6aB (a ,p = 1,2) where rst depends only on T and pi. A a 
consequence of p’), we may then write 

72 = *,dell + e p )  + =rd 
(and the same for sP), in which rSsr and depend only on T and j t t  (and are then 
constant in space, at the equilibrium). For small deformations, we use the following 
expression 

el, + en = ii/r + U’ + d2/2  + F( h/2)(v’/r + U‘’) 

in which E = +1 for the surface of the plate corresponding to the side of the drop f 
and E = -1 for the other surface of the plate. The variational calculus here leads to 
the following equations: equation (5) unchanged 

I 2?r2(v’/rz - v”/r + 2v”’ + rv(4)) 

2a(d3 + 3rv’*v”+ 2u’v’ + 2ru”d + 2ru’v” + ~ V ( ~ L ’ V ’  + uv”)) 
24( 1 - v Z )  

- E h  
2( 1 - v2) 

( p f - p r , ) (  I+zr’)2?r( r+u)+27r( n,(+ Q)( U‘+ rd‘) 
27r27rS,,( u‘+rv“)  

for all r €10, r-1[ 
for all r ~ ] r ~ . r ~ [  

(B1) 

(B2) 

={  
Eh 

2[u’] + 7ff’(TI + 7 1 ( l l ) / T , ) T ~  + 7rd‘ - XSf = 0 2( 1 - VZ) 

2[d ’ ]  + (?rd. - 7rsr)h/2 = 0 
24( 1 - v’) 

(Bs) 

Tv + rsr  - rsr ’  
1‘1 + 4r1) 

2Eh 

-YK’ r l + ‘ L ( r J  ( T J l t  
PI 

+( *# - ) { (L(rI) /PI + U‘( rf ) + ( U‘( r1))’/2+ ( h  /2)( U’( rl) /?*I + U’’( rp” 1) 1 
+?d - =rdt 

(notations as in the paper). Note that the terms of the two last lines of (BS) represent 
the value of 7,“r - $, at rp” and for the surface of the plate corresponding to the 
side off .  The two equations (BS) (for @ = + and @ = -) are equivalent, according 
to (B2) and (B4). 
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