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Absiract. Following the method of Gibbs, the equilibdum equations for a solid and
various fluids in conlact, including capillarity and efasticity, are written for the general
case,. They are then applied to the example of a thin plate in contact with a drop of
fluid. The classical Young's equation is modified.

1. Introduction

The equilibrium of a solid in contact with a drop of fluid (surrounded by another
fluid), including capillarity and elasticity, has been mainly studied in the semi-infinite
solid [1—4] (with a divergence problem at the solid-fluid-fluid contact line) and the
thin-plate case [5-7]. Nevertheless, in all these studies, (1) it was assumed that either
the solid—fluid—fluid line was fixed on the solid, or the volume of the drop of fuid was
constant; (ii) the solid—fluid surfaces were treated exactly as if they were fluid—fluid
surfaces. Assumption (i) is not justified (the true equilibrium variational condition
must take into account a possible motion of the solid-fluid—fluid line and a variation
of the volume—and the mass—of the drop of fluid), and assumption (ii) is incorrect,
as known from the first thermodynamic approach of Gibbs [8]: it corresponds to
a confusion between surface prand potential and surface stresses. An attempt to
introduce the surface stresses was made in [9] (in the case of the thin plate), but
with the erroneous starting assumption that the derivatives v” and v of v (= elastic
displacement perpendicular to the plate) were continuous at the solid—fluid—fiuid line
(the discontinuity jumps of »" and »™ are precisely consequences of the equilibrium
condition). There is then a real need to write the correct equilibrium equations
for a general system involving capillarity and elasticity, together with the precise
thermodynamics of a solid-fluid surface. These equations cannot be directly and
rapidly obtained: we have followed a rigorous method similar to that of Gibbs [8], in
which the various equilibrium equations are deduced from general thermodynamics.
This method is presented in appendix A, and the equations in section 2. In addition
to the above deficiencies, in the studies mentioned, the thin-plate case was treated
without any stretching (of the middle plane) of the plate, then assuming that © =0
(v = elastic displacement parallel to the plate). It was concluded that at the solid-
fluid-fiuid line, (i) the orientation of the plane tangent to the plate was continuous;
(ii) »” was continuous and "’ discontinuous and (iii) the classical Young’s equation
remained valid [7). However, in contradiction with the above assumption, a stretching
(of the middle plane) of the plate was clearly observed in a recent experiment [10].
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Section 3 and appendix B are then devoted to the case of the elastic thin plate
(with stretching, ie. with both components u and » of the elastic displacement),
by application of the general equilibrium conditions of section 2. This example
illustrates perfectly: (i) the various discontinuities which occur at the solid—fluid—Ruid
line: discontinuities of the tangent plane, v/, v" and »"; (ii) the influence of the
surface stresses and (iii) how the classical capillary Young's equation is modified when
elasticity is taken into account.

2. Equilibrium of a solid and various fluids in contact

Let us consider the general system formed by a solid s and various immiscible fiuids
f, ', etc in contact, in which the solid can neither dissolve nor grow, but there may be
mass exchanges between all the fluids and the solid—fluid and fluid-fluid surfaces. For
simplicity’s sake, we suppose that the solid consists of a substance ¢, the fluids and
the solid-fiuid and fluid—fluid surfaces are composed of the substances 1,2,...,n, all
these components ¢, 1,2, ..., n being independent (notc that the solid—fiuid dividing
surfaces, as defined by Gibbs, are perfectly determined by the preceding condition
that the surface density of the substance ¢ vanish). In the derivation of appendix A,
we also suppose that, for each component i, all the fluid regions and the fluid—fluid
surfaces which contain 7 are connected to each other, and we exclude the formation
of new fluids or new (solid-fluid or fluid-fluid) surfaces (in the variational equilibrium
criterion). By carefully applying the method of Gibbs [8], we show, in appendix A, that
the equilibrium of the system is equivalent to (i) the thermal and chemical equilibrium
equations (Al, A2); (ii) the mechanical equilibrium equations (A6, A7) concerning
only the system of the fluids (these equations (Al, A2, A6, AT} were written by Gibbs
{8]) and (iii) the following new mechanical equilibrium condition (of variaticnal form),
which only concerns the solid, the solid—fluid surfaces and the solid—fluid—fluid lines

BTF;+/.gézdmA+z[—-]prz-émd(a+/g§zd7n+/ (6Uao—T55'an
of st sl sf

- Z uiﬁmi,an) da“] - Z] YTy - 6 X di
: il

s’

+ 3 [ (= f)6xr 3 0 (1)
sff!

in which é is an arbitrary infinitesimal variation such that, on the closed surface which
bounds the system, the points of the solid and the points of the solid—fluid-fluid lines
remain fixed; see figures 1 and 2 for the geometrical notations; T is the temperature;
64 F, is the variation of the elastic Helmholtz free energy of the solid (at constant
T); g is the gravity field; = the height; m the mass; p the fluid pressure; da, da® are
areas of an sf surface element, in the present deformed state and in the ‘undeformed’
reference state of the solid, respectively; 4, is the chemical potential per unit mass of
component i; /4, 50 and m; 0, respectively, are the internal energy, the entropy
and the mass of the component ¢ per unit area in the rcference state of the solid
(these are surface excesses on sf, with the convention of Gibbs: no excess of mass for
the component of the solid); v4 is the ff' surface tension; di, /Y are lengths of an sff
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line element, in the present state and in the reference state of the solid, respectively;
for an sf surface, v° = Uy — TS,0 — 3_; p;m; 40 i5 the excess of grand potential
on sf, per unit area in the reference state of the solid. It may be specified that the
last summation ¥ g in (1) must also include simiiar terms for all other lines (of the
surface of the solid) on which the thermodynamic (solid-fluid) surface quantities are
discontinuous (if there are such lines which are not sff’ lines). Note that in expression
(1), all the variations & follow each material point of the solid, except $X and 5X°

Figure L. The system is formed by a solid s and various fluids f, [/, etc. The various
surfaces sf, ¥, etc and lines s, f'f", etc are indicated.

Figure 2. Geometrical notations. In the present stale of the system (b}, » is the unit
vector, normal to sf, oriented from f to s, 6z is the displacement of a material point
of the salid; Tg is the unit vector, perpendicular 1o the s’ line, tangential to the
surface, and oriented from the sif’ line to the interior of fi' and §X is the displacement
of the sff’ line, perpendicular to the line. §X? is the displacement of the s’ line,
measured in the ‘undeformed’ reference state of the solid (&), perpendicuelar to that line
in the reference state, positively considered from sf to sf*.

The term §Uzo ~ T6S 0 — 3, p;6m; 4o may be interpreted as the work of the
‘surface stresses’. Indeed, if we consider that, for a solid—-fluid surface, the variables
are T, u; and the state of strain of the surface (see {11-14]), and represent the latter
by the Green strain tensor e,, (o, 3 = 1,2) of the surface (the coordinate system
of the surface being fixed in the ‘undeformed’ reference state of the solid), then the
" application of (1), in the case of a unigue fluid £ gives

§Up =T8S = Y by 0 =0  atfixed e y(e, 8 =1,2)

(since the material points of the surface are fixed, and the sum of the two terms
corresponding to the solid vanish, owing to the mechanical equiltbrium in the solid).
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We may then write, in the general case

w,,u—Tasae—Ep,am, W=D Tepbeag @
o f3

(at each material point of sf; this surface stress tensor =, . is taken to be symmetric
because of the symmetry of e,4). This equation generalizes equation (24) of [14], in
the case of a solid-fluid surface. As an immediate consequence, we have

54 = —5,06T — Z My a0bit; + Y Togbesg. @)
a,f

These expressions (2) (for each sf surface, and, in the case of a crystal, for each
crystallographic orientation of the surface) may then be introduced in the equilibrium
condition (1).

3. Example of the thin plate

3.1. Equitibrium equations

As a simple application of the above equilibrium condition (1) (with the expressions
(2)), we now consider the example in which the solid s is a circular thin plate (with
conditions of circular symmetry on its boundary circle), in contact with a drop of fiuid
f, centred on the plate, s and f being surrounded by another fluid . In order to
simplify the equations, we suppose here that there is no gravity and no surface stresses
(the more complete equations, including surface stresses, are given in appendix B).
In this case, all the quantities T', u;, pr, P> Yars 7;; and *ys,, are constant in space
at equilibrium (p; is constant because g = 0, according to % ) of appendix A py,
pp and g are constant because T and u; are constant; ‘Tsr and 3, are constant,
according to (2'), because T and u; are constant and w,; = 0). The geometry of
the system is shown in figure 3. Let u(7) and v(r) respectively be the displacements,
along Or and Oz, of a material point of the plate situated at the distance r from O
(in the undeformed state). At equilibrium, the drop is spherical, with radius

R = 2vg: [(pg - po) 3
{according io (A6) of appendix A). We denote by 7. and r, the components along Or

and Oz respectively of the vector g (defined in section 2); we have the geometrical
conditions

'rf + 'rf =1 T, = ={r + uir))/R. (4)

With the following expression of the free energy of the plate (at constant temperature)

Eh3 :2 . Eh
f= f{24(1~u2)( 2T ot

rz :z
— u + — ) +2u— (u + ) 21rr} dr
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deduced from [15] (in this expression, the first part represents the energy of flexion,
and the second part the energy of stretching; r, is the radius of the undeformed
plate; E Young's modulus, » Poisson's coefficient and h the thickness of the
plate), the equilibrium condition (1) then leads to a variational problem with mobile
discontinuities (for some derivatives of « and v at r|). The variational calculus shows
that the condition (1) is equivalent to the following equations

i — L " 2 I
2(1 - V2)27r(2u/r 2u' = 2ru” — v = 20" 4 wo?)
_ (e —pp)v2n(r+u)  forall r€]0, 7 S
)0 for all r €]m, [ )
B 2“2(1"/?2 v 7 + 20" 4 ro@®)
24(1 -
i 3 2 v "ot [ "
01— UZ)Z‘JT[’U + 3rv + 2u'v + 21‘u + 2ra’ v 4 2u(v' v + uv”)]
(pr—pp)(1+ ' )27(r + ) for all r €]0, 7]
B ' ©)
0 for all r €]ry, ry|
Eh ., iy 7
31—y 2]+ wdln + /e, = @
En3 ar ] o B .
2—4(1 — Vz)Z[v T+ vg {lr + w(e)l/r /(1) = 7,) -_ 0 &
v”is continuous at n ©
'(1—V2) 2 (T"]'{-’u('l‘]))z 2
—e? Ta T
2ER T "1 3 =0 (10)

vyﬁ,%':‘(m{r,(l + 2/ () + ()} + g -

in which [v'] = v/ (nf) = (7)) = lim,_, .\, @ (r)~lim,_, .., w(r); similarly,
[v"] = v"(rF) = v™(r7 }; in (10}, ® =+ or —, and ¢®* = +1if ® =+, ® = -1
if ® = — (the two corresponding equations (10) are equivalent, according to (7)).
These equations (3)-(10) (or (3)—(5) and (B1)-(BS5) of appendix B) and the boundary
conditions completely determine R, u, v, 7, 7, and 7.

3.2, Physical meaning

The equations (5), (6) or (5), (B1) (above and in appendix B) represent the elastic
equilibrium of the plate (for » # ) subjected to the overpressure p; — pp in the
interior of the circular solid-fluid—-fluid line (for small deformations, {1+ w(r)}/r ~
1). There is of course a pressure effect due to the sum of the surface stresses when
the plate is curved (in the right-hand side of (B1)).

There are four equilibrium equations (7)-(10) or (B2)—(BS5) at the solid-fluid-
fluid line. Equation (8) expresses the elastic reaction of the plate to the ‘vertical’
component of the tension of the fluid-fluid surface, acting on a fixed line of the solid
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Figure 3. The solid thin plate s is in contact with a drop of fuid f and surrounded by
another fluid . O is the centre of the undeformed piate; Or is a centrifugal radial axis
(in the plane of the undeformed plate); Oz is the axis perpendicular to the undeformed
plate, oricnted from f to s and ry is the radius of the dircular sfi” line, in the undeformed
state of the plate (it becomes ry + u(r;} in the present staie).

(the plane of the undeformed plate being horizontal): this reaction is a discontinuity
jump of »'’ at ry (v is the vertical displacement of a point of the plate). This equation
may be compared with equation (24) of [7]. In addition, there is a contribution
of the surface stresses (in equation (B3)) by means of the jump of their moment
(myg — wyr )R /2 (see below, concerning (B4)).

Similarly, (7) or (BZ) expresses the elastic reaction of the plate to (i) the horizontal
component of the tension of the fluid~fiuid surface, acting on a fixed line of the solid
and (ji) the jump of the surface stresses g — 7y = (7wg: + 7 ) (@t rt) ~( g+ wgr)
(at ;). This elastic reaction is a discontinuity jump of u’ at = (u is the horizontal
displacement of a point of the plate). As a geometrical consequence, this discontinuity
of u' at » implies a discontinuity of the orientation of the plane tangent to the plate.

Equation (9) or (B4) represents the equilibrium of the moments: the jump of the
moment (at the middie planc of the plate) of the surface stresses (wy — 7 })h /2 =
(myr — mg)hf2 (@t r) —(me — wq)}h/2 (at r]7) is elastically equilibrated by a
discontinuity jump of v* at r;. Note that the equations (7) or {(B2), the discontinuity
of the tangent plane and equations (B3) and (B4) are completely new with respect
to the preceding work [7].

The last equation (10) or (BS) represents the equilibrium relative to the motion of
the solid-fluid-fluid line with respect to the solid. This original equation generalizes
the classical “Young’s equation’ (which concerns the undeformable solid). Indeed, note
that Young’s equation, ~yg+ €08 @+ 14 — vy = 0 would correspond to equation (10) in
which the first term (with coefficient ¢®) would be omitted and ' would be supposed
continuous at r;; with the help of {(r + u(m))/}H{7.(1 + W/ () + 7, v'(r)} =
—(dafda") cos o, where da/fda” is taken at = and  is the contact angle measured
in the fluid £, and we use v = +%dab/da for sf and sf'. Then, in the case of the elastic
thin plate, Young's equation is not valid and is explicitly replaced by equation (10) or
(B3). To our knowledge, it is the first time that such a rigorous and explicit equation
(which modifies Young’s equation) has been written. Let us recall that the preceding
work [7] concluded that Young’s equation was valid. Note that this new equation (10)
or (B5) involves all the parameters: fluid—fluid surface tension ~, solid-fluid surface
grand potentials ~Y (or %), surface stresses, geometry, strain and elasticity.
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3.3. Magnitude of the effects

In addition to the interest of the above equations (and those of appendix B) as original
theoretical equations, and as a very illustrative example of the equilibrium equations
involving capillarity and elasticity, it is of course important to estimate the magnitude
of their effects. As a first example, let us take typical elastic constants, E ~ 10! Pa,
v ~ 0.3, and geometrical values suggested by experiment [10], A =~ 3 x 1078 m,
r o 1075 m, v/(minimum) ~ —6 x 1072, v"(0} ~ —6 x 10* m~!. The respective
elastic energies of flexion and stretching, estimated by means of the following terms
(see, above, the expression of the elastic energy)

flexion: (ER®/24(1 — *))v"? ~ 0.5 x 1073 I m™?
stretching: (Eh/2(1 - v*))(22/2)2 ~5x 107 I m~?

clearly show the importance of the stretching, in agreement with the direct
observations of the stretching of the plate [10], and in opposition to the previous
works [5-7] which did not take into account the energy of stretching.

~Equation (8) generally produces an important negative jump of »'”. Thus, for
a vertical fiuid-fluid tension (v, = —1), with a typical value vy ~ 0.5 ] m~? (and
other parameters as above), it gives [v™] ~ —2 x 10" m~2. As shown by the explicit
profiles of [5], this discontinuity generally represents a jump from a high positive
value v'”(r) > 0 1o a negative one v"/(r) < 0, with the following visible effect:
the (radial) curvature »* rapidly increases (v > 0) from a negative value at »r = 0
to a positive one at » = r| (v" being supposed continuous at =), and then slowly
decreases (v < 0) from this positive value to a lower one at r = r,. The effect of
the surface stresses (the last term in equation (B3)) is generally small since h/r is
small. Nevertheless, this effect may be of the same magnitude as that of the fluid-
fluid tension (the second term of (B3)) if r, ~ 0 (i.e. for contact angles ~ (° or 180°):
in our example, v |7, v'| ~3x 1072 J m™? and |my — wg|f /2 =~ 1.5 x 1072 J m~2
if l"ﬂ'sf - stll =11 m_z.

The effect of the surface stresses i very important in equation (B4). With
7y > W and a difference of surface stresses m g —m ~ 1 J m~2, the above example
leads to the important positive jump [v"] ~ 6 x 10* m~! (of the same magnitude as
|»”(0)]). The consequence will be a high positive value of the curvature u"(r'l'" ), i.e.
a rapid increase of the slope (~ v’) of the plate (from a negative value 10 nearly
zero). This is probably the explanation of the rapid variation of the slope of the plate
at r ~ r,, abserved in [10].

With the preceding values, and according to equation (B2), the jump of v’ may
reach the value (with 7, ~ —1) [u’] ~ 0.5x10~>. This discontinuity jump is significant,
compared with w' ~ v2/2 ~ 1.8 x 10~3 (if we consider, as a rough cstimate, that
ufr =~ u' ~ v'?2/2; these terms represent the global stretching of the plate, since
ey + €n =~ ufr+ w' + v2/2 for the middle plane of the plate; see appendix
B). The discontinuity of ' produces a discontinuity of the slope »'/(1 + v} of
the plate. The corresponding jump [v'/(1 4 )] =~ —v'[«'] is generally small, but
may be appreciable with more deformable solids. With £ ~ 10* Pa (the Young’s
modulus range 10°-10° Pa is represented by polymers, elastomers and gels) and
other parameters unchanged, the jump of the slope reaches the considerable value of
—0.5¢", ‘

The deviation from the classical Young’s equation is mainly represented by the
first term (with coefficient ¢¥) in (10) or (B5). With the previous numerical values
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and £ ~ 10° Pa, this term (in equation (BS)) is equal to 0.08 J m~2, which is
appreciable with respect to the second term =~ vp =~ 0.5 J m~? of the equation. With
E ~ 10* Pa, it becomes of fundamental importance, its value (of 0.8 J m~2) being
greater than the second term vy,

4, Conclusions

By following the thermodynamic approach of Gibbs [8], we have obtained in section
2 and appendix A (i) the general thermodynamic equation (2) or (2) for a solid—
fluid surface, involving the surface grand potential and the surface stresses and
(ii) the complete set of equilibrium equations for a solid and various immiscible
fluids in contact, including elasticity of the solid and capillarity for all the solid-
fluid and fluid-fluid surfaces. These equations are (a) the thermal and chemical
equilibrium equations (Al, A2); (b) the mechanical equilibrium equations (A6, A7)
concerning only the fluids (all these equations were written by Gibbs [8]) and (c)
the new mechanical equilibrium condition (1) (with expressions (2}), of variational
form, which only concerns the solid, the solid-fluid surfaces and the solid—fluid—fluid
lines. This condition expresses the action on the solid of (i} the fluid pressure and
the (solid—-fluid) surface stresses, at cach solid-fluid surface and (ii) the fluid-fluid
surface tension and the difference of (solid-fiuid) surface grand potentials, at each
solid-fluid—fluid line.

As a very illustrative example of this general theory, the case of the elastic thin
plate in contact with a drop of fluid (surrounded by another fluid) is treated in
section 3 and appendix B. In this case, the equilibrium is equivalent to equations
(3)-(5), (B1)~(BS) (or (6)~(10) in the absence of surface stresses) and the boundary
conditions. The four original equations (B2)~(B35) at the solid-fluid~fluid line have a
clear meaning: (B2)-(B4) express the equilibrium of the forces, corresponding to a
solid-fluid-fluid line fixed on the solid; (B2) represents the ‘horizontal’ component of
the equilibrium (‘horizontal’ refers to the piane of the undeformed plate), (B3) the
vertical component and (B4) the equilibrium of the moments; whereas (B5) expresses
the equilibrium relative to the motion of the solid-fluid-fluid line with respect to the
solid.

Equations (B2)-(B4) perfectly illustrate the various discontinuities which occur at
the solid-fluid-fluid line, caused by the action on the elastic solid of the fluid—fluid
surface tension and the (solid-fluid) surface stresses: these are the discontinuity jumps
of w/, v" and v"" (u and v respectively denote the horizontal and vertical components
of the elastic displacement). The discontinuity of v’ also implies a discontinuity of
the orientation of the plane tangent to the plate. Note that, in the preceding work
[7], (i) the surface stresses were ignored (the solid-fluid surfaces were treated as if
they were Ruid-fluid surfaces) and (ii) equation (B2) and the discontinuity of the
tangent plane were unknown, since the horizontal displacement w (i.e. the stretching
of the plate) was not taken into account (in opposition to the direct experimental
observations [10]).

The original equation (BS) shows how the classical capillary Young’s equation is
modified when the solid is elastically deformable. To our knowledge, it is the first time
that such a generalization of Young’s equation has been proved and explicitly written
(the preceding work [7] concluded that Young's equation was valid). In addition to
the dependence of the (solid-fluid) surface grand potentials on the surface strain,
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and to the discontinuity of the plane tangent to the solid, this equation contains a
new term directly related to the elasticity of the solid (and also involving the surface .
stresses and the fluid—fluid surface tension).

It is also shown that the magnitudes of these effects (i.e. the various discontinuities
and the deviation from Young’s equation) are measurable and may even be of prime
importance, if the solid is sufficiently deformable.

Appendix A. The general equilibrium equations

We consider that the whole system is bounded by a closed surface £ and write the
Gibbs equilibrium criterion

SU+V)30

(U is the internal energy and V' the potential energy of gravity), for all variations of
the system such that (i) the entropy S and the masses m; of the various components
(=1,...,n})are constant and (ii) the bounding surface ¥, the points of the solid
which belong to this surface, and the lines in which the fluid-fuid surfaces meet this
surface, are all fixed. The above criterion may be written

f('nsds+ ij,_.aejkdu”) +Z/(T6d3—p6dv+zm6dmi)
5 ok f t H :
+ E/ (Té ds 4 yéda + z,u,-édm,-)
a v i
+Z§f dU+fg§zdrn+Ej(gézd?n-i—gzédm)
Sf sf s P
+ ) / Szdm -+ gzédm) + éjgzdm_zo
%: (g ) ; i

with the notations of the paper and v the volume; « the area; (x;,) the Kirchhoff

stress tensor; (e;,) the Green strain tensor and dv? an element of volume of the
solid in its ‘undeformed’ reference state; note that, in the solid, the variation & is
attached to each material element, whereas this is not the case for the fluids and the
ff' surfaces. The equilibrium criterion, together with the conditions of constant S and

LLLH

6dS §dS ds 6 g=0
]sds+zfjff d +§fm5 s+§sfj /sf‘“
;jgﬁd?ni—l-;fﬂfﬁdmi+;5/§dmi=0 (i=1,...,n)

lead to the thermal and chemical equilibrium equations
T = constant in space (A1)

u; + gz = M, = constant in space (i=1,...,n). (A2)
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With the help of the preceding equations, the equilibrium condition reduces to the
mechanical form

571‘1+/952dm+2/-(—p5dv+gﬁzdm)+Z/ (véde + gézdm)
s r Vf o V&

+ (6/ dU—Tﬁ/ 45 - M-é/ dm_v+5/gzdm)>0
Zsf: of f Zl: Tt st -
(A3)
where 6 F, = [ 5., 7.6, dv?.
Let us first transform the preceding terms ; and £4. Since the variation 4 only

concerns geometrical elements (dv, da and z), these terms will remain unchanged if
arbitrary vanations §p and &+ are introduced. Following Gibbs, we take

§p = (Opfox)(x,y,2)6z + (Fp/OyN=,y,2)6y + (8p/O=)(x,y, 2}6z
&y = (0] 0% )z, 23)0z) + (87/02))(my, 24) 0,

where p{z, v, =) is the pressure in f as a function of spatial coordinates and ~(z,z,)
the surface tension of ff' as a function of coordinates of the fF surface (these functions
refer to the present ‘initial’ state of the system, ie. before the variation &), and
(6z,, 6z,) represents the component éx,, tangent to ', of the displacement of a
point of ff'. Then

/(—pédv + gbzdm) = —G/IJdv+/(5pdv+gézdvn)
f f f
—/péNda—-Z/ p6Nda+/(6p+gmu6:)dv
s I iy i

where m, = dm/dv and éN is the normal displacement of the sf (or fi") surface,
positively measured from f to s (or {rom f to ). Hence

Z/(-—p&dv + gbzdm) = -—Z/ péN da ~ Zf {(p—p¥Nda
f f s s id iy
+ Zf(ﬁp-i— gm,bz)dv
f “f

in the term X, p refers to f, p’ to f and § N is positively measured from f to f'.
Similarly

f(-yéda +gézdm)=5/ 7da+/(—5~yda+gézdm)
ﬂ‘! r 1

f (R )61\"da+/ —yT- 5xaz+2/ T X d
1 'p

rlf
+/ {(—é-ydae + gbzdm)
ﬁr
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in which R), R, are the principal curvature radii of the ff' surface, positively
considered when the centres are on the f side; for each ff,  is the unit vector,
perpendicular to the sff’ (or fF'f”) line, tangent to the ff’ surface, and oriented from the
line to the interior of {f'; in the above terms, v+ refers to fi'; 6X is the displacement
of the sff’ (or ff'f') line, perpendicular to the line and d! is the length element along
the line.

Since

bz=8Ncos b+ 6z

(where @ is the angle between the Oz axis and the normal to the surface, oriented
from f to f, and 6z, is the component along Oz of §z,), we may write:

Z:f (véda + gbzdm)
g v
1 1 ‘
2] {{7 (——+—)+g?nac059] -5N+(—5‘Y+gma‘5-‘5t)} de
— Jar R, "R, _

_Zfsﬁr”'mdl_sz (}_:-rr)-wcdz

/g
in which m, = dm/da and the summation } 4 7 concerns the various f surfaces
which meet in the F{” line.
With the help of the preceding expressions, let us return to the condition {A3).
By fixing the points of the solid, the sff' lines and the thermodynamic state of the sf
surfaces, this condition only refers to the fluids, the ff surfaces and the 1" lines,
and it is then equivalent to the following equations:

l'"

in each f
dpfdz = —gm, (Ad)
in each ff'

dv/dz = gm, (A5)
{p—p’='r(1/R: + 1/Ry)+ gm, cosd (A6)
in each f'f’
Y o yr=0 (A7)
pon

(in (A4) and (AS), p, v, m,, and m, depend only on z). These equilibrium equations
(Al), (A2), (Ad)-(A7) were written by Gibbs [8]. Note that (A4) and (AS) are
consequences of (Al) and (A2), since p and ~ are functions of T and g; which
satisfy

dp = 5, dT + Z m; , dit;

dy = —5,d7T - Z ™m; , du;
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(as above for m, we use the subscripts v and o respectively o denote the volume
density and the surface density).
With the help of (A4)-(A7), the above expressions may finafly be written

Z/(—p&dv + gbzdm) 4 Z] (véda + gbzdm)
l' f ﬂ" ﬂr

=-% [veNaa-3 [ or-6xaL (A8)
f S sff

The terms I in (A3) are transformed in the following way

) / dU = § f Usoda® = / §U da’+ 3 / U, dX0dl0
st st of o Yt

the superscript O indicates that areas and lengths are taken in the ‘undeformed’
reference state of the solid; I/, = dU fda" 8U,, is attached to each material point
of the solid; 6 X" is the displacement of the sff line, measured in the reference state
of the solid, perpendicular to that line in the reference state, positively considered
from sf to sf’. Then

6/ aU = f&Ua da” + f Uspog — Ugo i )6Xdl0,
g st § sf " Z 'ﬂ'( St ')

S’ 5

More precisely, note that the last summation £ 4 must be performed for all the lines
(of the surface of the solid) on which U, is discontinuous (if there are such lines
which are not sff’ lines). With similar expressions and the help of (Al), (A2), we
obtain '

Z(Ef dU—Téf dS—EM,-é] dm,.+5fgzdm)
of sf sf 1 sf sf
= z (](5[/ao - T(S.S'ao - Zuiémi‘ﬂu)dau + / gﬁz d?ﬂi)
st sf i sf
+3 [k -apsxvar (49)
sﬂ‘ s’

with the notations of the paper.

The introduction of expressions (A8) and (A9) into (A3) leads to the equilibrium
condition (1) of the paper. The equilibrium of the system is then equivalent to
equations (Al), (A2), (A6), (A7) and condition (1).

Appendix B. Equations for the thin plate with surface stresses

For simplicity’s sake, we also suppose that there is no gravity. Then, T, y;, pg, Py
and -z are constant in space at equilibrium. Equations (3) and {(4) of the paper
remain valid. However, according to (2’), the surface grand potentials v5 and ~%,
now depend on the surface strain e, ;. The more simple case is that in which the
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surface stresses only depend on T and y; (and not on e,g), and are isotropic,
L. Ty 0g = Tybap (0,8 = 1,2) where n,; depends only on T and g;. As a
consequence of (2’), we may then write

Y4 = wgley + en) + Ty

(and the same for sf'), in which m; and 5 depend only on 7" and y; (and are then
constant in space, at the equilibrium). For small deformations, we use the following
expression

ey +ep = ufr+u 022+ W/ 7+ ")

in which ¢ = 41 for the surface of the plate corresponding to the side of the drop [
and ¢ = —1 for the other surface of the plate. The variational calculus here leads to
the following equations: equation (5) unchanged

____Eh3 2x2(v [rt — v fr 4+ 20" 4 ro(4h)
241 - v7)
Z_(_i__Efi_z)Z?r(v’s + 3rvu” o 2u'v’ £ 2rulv’ o 2ru/v” 4 2u(WlY  uv™))
| (pr=pp )1+ )27 (r b )+ 27 (mg + 7 ) (v +r0") for all r €10, r=][
T 22w (v +rv”) for all r €]r,rp[
(B1)
Eh ,
m-’-[u] + @ (m+w(r)/r)Te + wg — g =0 (B2)
Eh3 . '
24(_'1___!,,2)2[1»" 1+ ‘Yﬂ"ﬁ-l-%(r[)(rrv (r)~7.)+(Fg — 7)1 /2 =0 (B3)
Eh3
m:u—z)z[v"] + (g ~ 74y )0/2 =0 (B4)
1—1p2 4 u(m g )
"fe_z'E'"h'_ {3(7751' - 7;5{,)2 + (_‘Yﬂ’_i_,::_("_[lrr + Tt — ﬂsf’) }
e LA +:L(T‘i) {1_7‘(1 + ur(,'_lob)) + T, U’("‘E)} V= ()
+{wg—mg ) {u(m) /r+ e (r)+ (v (1) /24 (R /2 (r) S+ v ()
¥ — Yetr S
(B3)

(notations as in the paper). Note that the terms of the two last lines of (B5) represent
the value of v — 2 at ~¥ and for the surface of the plate corresponding to the
side of . The two equations (B5) (for ® = + and & = —) are equivalent, according
to (B2) and (B4).
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